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We review semiclassical approximations for wavefunctions, including the EBK 
approximation for integrable systems and the recent work of Bogomolny and 
Berry for nonintegrable systems, stemming from the periodic orbit theory of 
Gutzwiller and Balian and Block. In particular we focus on the localization 
around periodic orbits (scarring) first appreciated by Heller, and the description 
of this scarring in both coordinate and phase space. We examine individual 
wavefunctions of a schematic shell model in phase space and find that few are 
ergodic. We also find that the degree of localization depends both on the degree 
of chaos in the classical limit and on the nearness of the eigenvalue to an energy 
that quantizes the scarring periodic orbit. 
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Dynamical chaos in classical mechanics is described as "instability with 
respect to initial conditions." There is evidence ~1) that such instability does 
not occur in the analogous quantum mechanical problems. However, there 
is no doubt that the qualitative change in the classical dynamics is reflected 
in a similar change in the quantum mechanics. To appreciate this change, 
first consider the simple one-dimensional, time-independent (and therefore 
nonclhaotic) system. Classically, the motion in phase space is confined to 
one-dimensional isoenergy surface and is completely predictable. Quantum 
mechanically, the WKB approximation provides a good approximation to 
the energy eigenvalues and eigenfunctions; we do not need to solve the 
time-independent Schr6dinger equation to know where the probability is 
the largest. On the other hand, if we consider a classical system that is 
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chaotic, the dynamics is unpredictable, while in the quantum regime the 
WKB method no longer applies. Does that mean we lost all ability to say 
something about the probability short of doing the calculations? Has the 
classical mechanics ceased being of any use in solving the quantum 
mechanics? 

The answer, fortunately, is no. One approach to this problem of quan- 
tum mechanics of chaotic systems is periodic orbit theory, developed by 
Gutzwiller (2) and Balian and Bloch. (3) They derived an alternate quantiza- 
tion procedure (which works regardless of the degree of chaos in the classi- 
cal limit) which expresses the density of states as a sum over all periodic 
orbits. More recently, it has been found that periodic orbits also influence 
the wavefunctions. Heller (4) found that the short unstable periodic orbits 
give rise to a localization of the eigenvectors, known as scarring. Heller's 
work has sparked much theoretical and numerical work on wavefunctions 
in the context of periodic orbit theory. 

This paper is concerned with semiclassical energy eigenfunctions in 
general, and with scarring in particular. Section 1 begins with a general 
review of semiclassical wavefunctions, including some background on 
classical dynamics; Section2 describes wavefunctions in phase space; 
Section 3 describes the initial work concerning semiclassical wavefunctions 
of nonintegrable systems; Section 4 relates the initial discovery of scarred 
eigenfunctions; Section 5 discusses recent work on scars in the context of 
periodic orbit theory; and Section 6 gives a brief summary of current work 
on scars. Section 7 introduces our model Hamiltonian, and Section 8 
explores scarring in this system, with particular attention given to 
individual states and their quantal surfaces of section. 

As a final general remark, we note that interested readers may turn 
to the excellent reviews by Berry (5) and Berry and Mount (6) for in-depth 
discussions of semiclassical methods, to the wealth of recently published 
books on the classical and quantum mechanics of nonintegrable systems 
(for general references on both classical and quantum Hamiltonian chaos 
see refs. 7), and to several books on classical mechanics that treat nonin- 
tegrable systems in depth (see refs. 8 for treatments of classical Hamiltonian 
dynamics that include nonintegrable systems). 

1. S E M I C L A S S I C A L  W A V E F U N C T I O N S  OF 
INTEGRABLE S Y S T E M S  

We begin with integrable systems, i.e., those for which the number of 
degrees of freedom equals the number of constants of the motion. These 
constants must be linearly independent and in involution (i.e., the Poisson 
bracket for each pair is zero). In the semiclassical limit, a great deal is 
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known about the wavefunctions of these systems because the classical 
dynamics is beautifully simple. (7'8) This simplicity arises because in phase 
space (where the variables are momenta and coordinates) classical trajec- 
tories are confined to N-dimensional tori (9) (i.e., an N-dimensional cube 
with periodic boundary conditions) which are therefore invariant under the 
dynamics. Because phase space is foliated by tori, there exists a canonical 
change of coordinates such that the Hamiltonian can be written as a func- 
tion of the new momenta alone; these momenta are known as the actions 
I. Using Hamilton's equations of motion, we find that the actions are con- 
stant in time and that the conjugate coordinates, the angles 0, change 
linearly in time. Therefore in these systems the dynamics is trivial; however, 
finding the constants of the motion (or knowing if they exist) becomes the 
difficult task. 

This organization of classical phase space (i.e., the foliation by tori) 
is necessary for the Einstein-Brillouin-Keller (EBK) approximation, 
which is the generalization to higher dimensions of the better known 
Wentzel-Kramers-Brillouin (WKB) approximation for one-dimensional 
problems ~5-7) and was introduced for general systems by Van Vleck. (1~ The 
key to this method is the association of an invariant torus with a wavefunc- 
tion in such a way that the association persists in time. Since the torus is 
invariant with time, so is the wavefunction, and therefore the wavefunction 
is an energy eigenfunction. The association is made as follows: the 
amplitude of the wavefunction is the square root density of points evenly 
distributed on the torus, projected onto coordinate space, and the phase is 
given by the action 

f2 S(q, I) = p(q', I).  dq' ( 1 ) 
0 

The complete wavefunction is the sum of several such terms: 

8zS~ , '/2 (" ~ q I ) " 2 ~ . )  ~U (q)= ~ d e t - -  exp ISn , t 
b . . . .  h e s .  8qj 8I  k (2) 

one for each branch of p(q, I). 
The last term in the exponential (i#~r/2) arises from careful considera- 

tion of the turning points in coordinate space (caustics) where the 
amplitude diverges and the values from the different branches must join 
smoothly. The details were worked out by Maslov, (m who repeated the 
same procedure as above for the wavefunction in momentum space (whose 
caustics cannot be the same as those in coordinate space), then related the 
two wavefunctions via Fourier transforms, and thereby determined the 
correct phase difference between the different branches (this work is 
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reviewed in ref. 12). The Maslov index # included in the phase changes by 
integer amounts at conjugate points (i.e., those places where the amplitude 
diverges). 

Finally, the quantization of energy arises when we require that the 
wavefunction be single-valued, for which we obtain 

(3) 

where Ck is the kth irreducible circuit around the torus, and I~ is the 
quantized action. 

2. Q U A N T U M  M E C H A N I C S  A N D  P H A S E  S P A C E  

So far, we have obtained the semiclassical wavefunction in coordinate 
representation. Coordinate space, however, is not as informative as phase 
space: in phase space, trajectories do not intersect, the flow is volume- 
preserving, and the invariant structures (e.g., tori) are unambiguously 
identifiable. It is reasonable to expect that quantum mechanics in phase 
space could also be more enlightening. In this section we will examine ways 
to express quantum mechanics in phase space. 

To express a wavefunction in terms of both q and p we begin with the 
Weyl transform of an arbitrary quantum operator i], defined as follows: 

(2~h) ~------~1 ( Wj(q,p)= Tr A f d Q d P  

x exp {~ [ ( ~ -  p)" Q + ( ~ - q ) "  P ] } )  (4) 

where N is the number of degrees of freedom. This transforms any quantum 
operator into a function of q and p. Therefore, to obtain a function for a 
wavevector in phase space, it is reasonable to take A = I~u)(~ul/(2rch) N. 
This is known as the Wigner function ~13) of gt (see ref. 14 for examples). 
After some manipulation, this is written in the more familiar form 

W~,(q, p)=  (2rch)-N f dq' e x p ( - i p ,  q'/h) ~P*(q-q'/2) gt(q + q'/2) (5) 

The Wigner function can become negative, so it is not a probability density 
in phase space. However, we can recover the usual probabilities from W~,: 
the Wigner function integrated over p gives the probability in coordinate 
space, while the integral over q gives the probability in momentum space. 



Serniclassieal Wavefunctions 101 

As an example, consider the semiclassical wavefunction for integrable 
systems derived in Eq. (2); the corresponding Wigner function can be 
calculated via the stationary phase approximation/5) The distribution is a 
delta function on the corresponding quantized torus, 

1 
Wk(q, p) = ~ 6 ( l (q ,  p) -- Ik) (6) 

where I k are the quantized actions (3). This is precisely as we might expect 
given the method of construction of (2). Therefore, although this method 
of moving into phase space is not unique, it gives semiclassical results in 
agreement with classical intuition. 

Another method to lift the wavefunction into phase space is the 
Husimi distribution,~15~ defined as the overlap between a coherent state and 
the wavefunction: 

~ , (q ,  p)= [(q, p [ ~)[2 (7) 

where coherent states [q, p) are defined as the minimum-uncertainty wave 
packet, (16) i.e., a "quantum point." For the Heisenberg-Weyl group 
(2,/~, T), the coherent state is a Gaussian wave packet, parametrized by the 
center of the packet p, q. Although Gaussians are the best known coherent 
states, they are not the only ones. Many other dynamical symmetry groups 
also have their own appropriate coherent states, (16) and therefore this 
procedure for moving into phase space is applicable to eigenstates of 
many Hamiltonians. 

'The advantage of the Husimi over the Wigner distribution is that the 
Husimi is everywhere positive and does not display the rapid oscillations 
characteristic of the Wigner/~7) On the other hand, there is arbitrariness 
in the coherent states (and therefore the Husimi) because the uncertainty 
is split arbitrarily between q and p. However, one serious objection to 
Husimis has been recently removed. It was at first thought that phase infor- 
mation was lost in taking the square of the overlap. However, Leboeuf and 
V o r o s  (18) have pointed out that all the information about ~ is retained in 
the Husimi via its zeros since the Husimi is an analytic function. 

Now we have two ways of evaluating wavefunctions in phase space, 
but there are still technical difficulties with plotting. If we have two degrees 
of freedom, phase space is four-dimensional, and the energy shell is three- 
dimensional; neither can be easily be plotted on paper. The solution is 
known as a surface of section. Classically, these are created by fixing one 
variable (e.g., ql = ql0)  and plotting q2 vs. P2 for ~ ~> 0 (Pl is then fixed by 
energy conservation); this is a cross section of the energy shell. Similarly, 
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the quantal surface of section (QSOS) is given by the Husimi function with 
similarly chosen values of the variables: 

Sqt=qto(q2, P2,  E )  - ~ [ q l  = qto, q2, Pt(  E, qt0,  qz,  P2), P z ]  (8)  

Su r f ace s  of  s e c t i o n  a re  use fu l  as a d i a g n o s t i c s  for  t he  d e g r e e  o f  c h a o s  in  t he  

c lass ica l  sys tem.  T o r i  wil l  a p p e a r  as  s m o o t h ,  c lo sed  curves .  H o w e v e r ,  if t h e  

c lass ica l  l im i t  is n o t  i n t e g r a b l e ,  p h a s e  s p a c e  will  n o t  be  c o m p l e t e l y  f o l i a t e d  

b y  tor i ,  a n d  t h e r e  wil l  b e  r e g i o n s  of  c h a o s  r e p r e s e n t e d  as  a sea  of  d o t s  (see 

Fig.  l a ) .  
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Fig. 1. (a) A classical surface of section at /2=0.5 for the Hamiltonian (31) at E =  -0.09. 
The crosses indicate energetically inaccessible regions. The smooth curves enclosing a white 
area are KAM tori; each is made by one trajectory. These are the regular regions of phase 
space. The sea of dots was made by a single trajectory in the chaotic region. The remaining 
smooth lines within the chaotic sea are the stable and unstable manifolds of the unstable 
periodic trajectory. Note that the periodic trajectory I 0 = 0  is the entire I] = 0.5 line. (b)The 
QSOS (8) for a state associated with a KAM torus. (c) The same for a state associated with 
the lo = 0 periodic orbit; the eigenvMue is very close to an energy that quantized the action 
of that orbit. The circles are the stable and unstable manifolds of that orbit. (d)A state 
scarred by both the I o = 0 and 11 = I o periodic orbits. The SUM for the I o = 0 orbit is shown 
with circles; the SUM for the I~ = I 2 orbit is shown with crosses. This state is far from an 
energy which quantizes the I 0 = 0 orbit. (e)An eigenstate scarred by the 11 = I 0 periodic orbit 
and the stable and unstable manifolds of that orbit. (f) The only state in the energy region that 
is close to ergodic. 
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Fig. i. (Continued) 

3. SEMICLASSICAL WAVEFUNCTIONS FOR 
NONINTEGRABLE SYSTEMS 

We now have the energy eigenstates for integrable systems in both 
phase space (6) and coordinate space (2), but integrable systems are not 
typical. Typical systems have regular regions populated by KAM tori 
(those tori that persist even though the system is nonintegrable) and 
chaotic regions where tori no longer existJ 7~ EBK quantization cannot be 
extended to these systems without tori. However, we can attempt to 
generalize what we have learned about Wigner functions: they should be 
localized on the regions of phase space covered by a typical trajectory. In 
particular, for ergodic systems (those with no tori left), a typical trajectory 
covers the entire shell, so the corresponding Wigner function would be as 
follows: 

6 [ E -  H(q, p)] 
We(q, p) = y dq' dp' 5 [ E -  H(q', p')] (9) 

This was in fact an early, independent conjecture of Berry and Voros. (19) 
Recalling that I g '(q)l  2 is the projection of the Wigner function onto 

coordinate space, we can therefore also say something about the 
probabilities. For example, if the Hamiltonian is two-dimensional and of 
the form (p~ + p~)/2m + V(ql, q2), then (9) implies a constant probability 
over the energetically allowed region of coordinate space. However, this 
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result cannot be correct since the probabilities must oscillate in the classi- 
cally allowed region. Instead, we must interpret (9) as the correct result 
when we average over small regions in phase space, and the resulting 
probability (obtained by projecting down onto coordinate space) as a 
smoothed wavefunction. In the semiclassical limit, we can average over 
many wavelengths, yet take the averaging interval to zero, indicating that 

can have large variations in the probability amplitude and yet be agree- 
ment with Eq. (9). 

This expectation of relatively smooth probabilities is essential because, 
as Heller points out, (2~ a state can be considered localized only if it is 
less spread out than we would expect given prior constraints (e.g., energy 
conservation). Their conjecture gives us the context in which scars are so 
surprising. 

This conjecture (9) for ergodic systems was supported by the inde- 
pendent works of Shnirelman, Zelditch, and Colin de Verdiere. ~21) They 
looked at ergodic geodesic flow, and found that the eigenstates of the 
Laplacian (the free Hamiltonian) obey the following relation: 

lira f~ dqa(q) I~:(q)[ 2 j ' a d q a ( q )  (10) 
�9 - ~ d q  

for smooth a(q) and almost all j. That is, [~j(q)l 2 is essentially evenly 
spread over coordinate space, since as j ~ ~ ,  the oscillations are so rapid 
that only the average value is picked up by the smooth function a(q). Note 
that in this special case, the average value of the probability is a constant 
because there is no potential. 

4. S C A R R E D  W A V E F U N C T I O N S  

The earliest work done on the eigenfunctions of chaotic systems was 
by McDonald and Kaufman. ~22) They worked in the stadium billiard--one 
of the few classical systems that is known to be ergodic. Many of their plots 
of ~n gave the strong impression of stochasticity, just as was expected from 
semiclassical arguments. Yet they also found that some of the eigenstates 
did not have a probability amplitude evenly spread over the available coor- 
dinate space, but localized on short periodic orbits. This phenomenon was 
left as "an enigma" in their work. 

Heller, O) working in the same system, found the same phenomenon, 
explained the association with periodic orbits, and dubbed the behavior 
"scarring." His explanation is based on a time-dependent picture. If we 
launch a wave packet on an unstable periodic orbit (i.e., one whose 
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neighboring orbits are diverging exponentially), propagate it semiclassi- 
cally, and plot the autocorrelation (~u(t) [ ~u(0)) of the wave packet, we 
see three time scales. Very quickly the autocorrelation drops to zero as the 
packet moves away from its initial position (At~ l/a), then there is a 
recurrence at the period of the orbit (At = T), but there is also an exponen- 
tial decay of the recurrence height (At ~ 1/2) because the wave packet is 
falling off the unstable orbit. The rate of divergence, 2 is the Lyapunov 
exponent of the orbit. If we Fourier transform the autocorrelation function, 
we obtain the power spectrum with energy scales inverse of those in time. 
The initial short dropoff in time gives rise to a wide (statistical) envelope 
in energy (AE~ ~). The recurrence at the period gives rise to oscillations 
about the envelope (AE~ I/c), and the instability 2 gives the width of 
those peaks (AE~ 2). 

What does this say about the spread of the eigenfunctions in coor- 
dinate space? Those eigenstates that have larger than statistical overlaps 
with the initial wave packet will also have large overlaps with the wave 
packet for all time, and so have larger than statistical overlaps with the 
periodic orbit that the wave packet follows. This larger than statistical 
overlap is a scar on the wave function; the name arises because of the 
appearance of the contour plots of 7tn(q); the large probability appears as 
a dense and dark set of contours (see Fig. 4). It is important to note that 
from the discussion of the autocorrelation function, if the product 2r is 
large (i.e., the orbit is very unstable), then the autocorrelation function 
looks again like the broad statistical distribution, and no scarring occurs. 

Heller has shown that this localization due to unstable periodic orbits 
is a specific case of a more general phenomenon: localization of eigenstates 
will occur whenever there are recurrences in the classical dynamics before 
the break time. ~2~ The break time is given by ~B = hD(E), where D(E) is 
the density of states; it is the time at which the dynamics notices the 
discreteness of the spectrum and after which not much new can happen in 
the quantum dynamics. 

But I~U(q)r 2 may not tell us unambiguously which periodic orbit is 
responsible for the scarring, since periodic orbits can overlap in coordinate 
space. A less ambiguous identification can be made by looking in phase 
space. This was done first by Waterlandetal., ~23) who examined the 
QSOS (8) for eigenstates of a chaotic quartic potential. Their results were 
convincing: they saw the Husimi distributions that were concentrated 
directly on the stable and unstable manifold (SUM) of the unstable 
periodic orbit. These are the manifolds that are created by propagating a 
swarm of initial conditions close to the periodic orbit both forward in time 
(for the unstable manifold) and backward in time (for the stable manifold) 
(see Fig. la). The energy-averaged Husimi functions were also concentrated 
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on the same manifolds. They noted that the scarring occurred near, but not 
predictably on, energies that quantized the action of the periodic orbit. 
Feingoldetal. ~24~ have found that the association with the stable and 
unstable manifolds is clearer for the Wigner distribution than the Husimi, 
yet the detailed structure of the Wigner obscures all but the strongest 
scarring. 

5. PERIODIC ORBIT  T H E O R Y  A N D  SCARS 

Our understanding of scarred states became more quantitative and 
detailed with the theoretical work of Bogomolny 125) and Berry. (26) Both 
started with the work of Gutzwiller (2) and Balian and Bloch, ~ which 
derived a semiclassical expression for the density of states in terms of a 
sum over periodic orbits of the classical system. This is a powerful and 
surprising formula, so we will take a detour in order to understand its 
origins. 

The beginning point of this and the related calculations is the energy 
Green's function G(q, q', E) which tells us all there is to know about the 
quantum system. For example, we can write the density of states as follows: 

p(E) = ~ 6 ( E -  E,,) 
n 

f ~ , ( q )  gt(q) 1 lim Im dq 
~ ~ 0 ( E -  En) + ie 

= 1 lim Im f dq G(q, q, E + i~) (11) 

The other ingredient that we need is that the Green's function is the time 
Fourier transform of the propagator K(q, q', t), which can be expressed as 
a Feynman path integral 

K(q, qt t)= fall paths ~[q(27)] exp[iR(q, q', t)/h] (12) 

where 

;o R(q, q', t) = ,.~(q"(-~), ,~"(r), ~) a-r 

= q 'p(q")-dq"-  H(q"('O,p(q"('O),'OdT (13) 
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is Hamilton's principle function, 5~ is the Lagrangian, and we integrate 
over all geometric paths (parametrized by z) that go from q' to q in time t. 
Putting this all together, we have 

p(E): l imlm 1 f f/  fa ,~o ~h dq dt ~[q(z)]  11 paths 

x exp i[R(q, q', t)+h (E+ie)t] q=q' (14) 

The evaluation of p(E) therefore requires three integrations; in the 
semiclassical limit, these can all be done by the stationary phase 
approximation (SPA). Each of the SPAs serves to limit the paths in the 
sum. We begin with all geometric paths in the Feynman path integral; 
evaluation of the path integral limits us to paths which obey classical 
dynamics: 

6R(q, q', t ) = 0  (15) 

since the stationary phase requirement is equivalent to Hamilton's prin- 
ciple. The resulting semiclassical formulation for K(q, qf, t) is known as the 
Van Vleck propagator. (1~ (For a detailed derivation, see the monograph 
by Shulman. (3~ Next, the time integral limits the classical paths to those 
of energy E: 

?(Et + R) 
- E -  H(q, p, t) = 0 (16) 

~t 

This equality also reduces the phase to the action 

I f  �9 dq" S(q, q ' )=  p (17) 

Lastly, the integral over space limits us to periodic orbits: 

OS q OS ~S Oqj q 

0 = ~ q  i = q, : 63q-'-~ + ~qj'. ~qi =q, 

=Pi(qi)--Pi(q;) q = q ' : 0  (18) 

and when we take the trace (q = q'), this says the initial and final momenta 
are equal, i.e., the trajectory is a periodic orbit. 

This quick look at the SPA evaluation of the integral shows how we 
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come to consider only periodic orbits. The final expression, however, also 
requires a nontrivial evaluation of the amplitude and a more complete 
discussion of Maslov index, (2'31) which is too detailed to repeat here. The 
result is as follows: 

psr = po(E) + Poso(E) (19) 

where 

1 ( .  

po(E) = t rcn)'2-~" N J 6 [ E -  H(p, q)] dp dq (20) 

is the Thomas-Fermi term [which simply counts the area in phase space 
in units of (2r~h) u at the correct energy] which comes from orbits of zero 
length, and 

pose(E)= ~ ~'Apcos[nSp(E)/h-in#prc/2] (21) 
p e r i o d i c  n 
o r b i t s  p 

where Sp(E) is the action (17) of the pth orbit, and n is the number of 
traversals of the primitive (one time around) periodic orbit. The Maslov 
index pp essentially counts the number of times that the amplitude diverges, 
and the amplitude itself (Ap) contains information about the stability and 
period of the orbit. In particular, for an unstable fixed point, we have 

Ap - ith sinh(n2p/2 ) 

where Tp is the period of the primitive periodic orbit; 2p is the Lyapunov 
exponent. (67) This trace formula has been extended to systems with 
continuous symmetries by Creagh and Littlejohn. (32) 

Equations (11) and (21) say that the eigenvalues can be obtained 
semiclassically by looking for the values at which the periodic orbit sum 
diverges. Note that periodic orbit quantization, unlike Bohr-Sommerfeld, 
works for any classical system, whether or not tori exist. Also, Berry and 
Tabor ~27) showed that for an integrable system, the two quantization 
methods are equivalent. This can be seen as follows: if we are near a 
quantized torus, there is a series of nearby resonant tori (i.e., ones with 
commensurate frequencies and therefore periodic orbits) the ratio of whose 
frequencies are rational approximates of the ratio of frequencies on the 
quantized torus. Under certain conditions, ~ phases of the periodic orbit 
and all of its repetitions add coherently to the sum, and give a divergent 
contribution to the density of states. 
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However, formula (21) is not without difficulties. It says that we must 
sum over all periodic orbits, yet the number of periodic orbits grows 
exponentially with the period r. Does this sum converge at all, and does it 
converge at real values of the energy? Gutzwiller (28) was able to do the sum 
for the anisotropic Kepler problem. This tour de force was possible because 
there exists a binary coding for the periodic orbits, and the action can be 
approximated in terms of that code. The resulting semiclassical eigenvalues 
of low-lying states were in good agreement with the quantum mechanical 
calculations, and the imaginary parts of the energy were small. For the 
hydrogen atom in a magnetic field, where the entire sum cannot be done, 
Wintgen ~29) summed (21) over 13 orbits with the smallest action, and 
found that these give good results for the few lowest eigenvalues. Recently, 
much effort has been put into the method of cycle expansion for speeding 
up convergence and making this a computationally tractable method for 
quantization. (33) 

A surprising source of help in the understanding of the analytical 
properties of (21) are the zeros of the Riemann zeta function 

1 
( (s)= L - - = 0  (22) 

n = l  l ' l  s 

which are hypothesized to lie on the line Re(s)= 1/2. The zeros do not 
come from a dynamical system (as far as we know), but the oscillating part 
of their density along the line Re(s)= 1/2 gives a form exactly like that of 
(21) if we identify the dynamical functions (e.g., action and Lyapunov 
exponent) with functions of the prime numbers. The analytic framework 
supplied by the zeta function (the functional equation, in particular) has 
been used by Berry and Keating (34) to study the convergence properties 
of the trace formula. Sieber and Steiner (35) have used the dynamical zeta 
function and the trace formula to quantize the hyperbola billiard, and 
Tanneretal/36) combine the cycle expansion and functional equation 
to obtain reliably and efficiently eigenvalues for the anisotropic Kepler 
problem and three-disk billiard system. 

Lastly, there have always been doubts about the long-time accuracy of 
the Van Vleck propagator. Recent work by Tomsovic and Heller (37) has 
shown that the semiclassical propagator and the exact quantum dynamics 
give autocorrelations (gq0)[  ~u(t)) for Gaussian wave packets in the 
stadium billiard which agree in great detail for times ( t=  6) much longer 
than the break time (t ~ 2). Even though the classical swarm of initial con- 
ditions has become long and filamentary by t = 6 (the swarm has folded 
over at least 30,000times), this classical dynamics in the semiclassical 
theory accurately represents the quantum dynamics. They conclude that 
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"the intricate dynamics of chaotic motion do not have the strong adverse 
effect on the fundamental semiclassical approximation that had been 
believed." This work gives renewed hope that semiclassical procedures can 
succeed even though the classical and quantum dynamics bear little 
resemblance to one another. 

Returning to our main theme of wavefunctions, Berry and Bogomolny 
used the same ideas to calculate their scar formulas: beginning with the 
semiclassical propagator and evaluating integrals via SPA. Bogomolny 
used the following relation for the probability in coordinate space: 

i~(q)12_ Im G(q, q, E) (23) 
S dq' Im G(q', q', E) 

To evaluate this semiclassically, he followed the above procedure for the 
density of states, but did not take the final integral over q. This implies that 
his sum included all classical orbits at energy E, not just the periodic ones. 
However, by averaging over small regions in q and short energy intervals, 
he limited the sum to closed orbits near short periodic orbits (i.e., q = q' 
and p -  p' small). The resulting formula for the probability (averaged over 
both space and energy) has a smooth term which is the space and energy 
average of (9). The oscillatory term gives a detailed picture of the contribu- 
tion from trajectories in the neighborhood of single periodic orbit. 
Qualitatively, the strength of the scar is [h/m~2(x)]l/2/[OI and the width is 
hm/W(x), where mu(x ) is an element of the monodromy matrix, (31) 
W(x)= [(m11(x)+m22(x)-2)/mlz(x)], and Iql is the modulus of the 
velocity. Also, he showed that the probability maximum is sometimes on 
the orbit itself, and sometimes symmetrically just off the orbit, and that the 
probability is greatly enhanced at self-focal points where m~2(x) is zero. 

Berry, on the other hand, chose to look at the Wigner function by 
taking the Weyl transform of the Lorentzian-smoothed spectral operator: 

1 1 
6 , ( E - / t )  -= - Im (24) 

(E + is - / ~ )  

which is equivalent to energy-smoothed Wigner functions of the energy 
eigenstates: 

W(q, p, E, 5) = (2~h) N ~ 6~(E- E,) W~,(q, p) 
n 

=fdq'ei""'(q-t-q---2 c~(E-I?I) q-q----2) 

2 f eip.,,f ~ ( q' q' ) h Re dq' dt etiE-~at/~K q = -  --~-, q+~-,  t (25) 
o 0 
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The evaluation of this integral again involves three SPA, but with slightly 
different results than before. This time, because of the spatial arguments of 
the propagator, we find that the SPA evaluation of K(q - q'/2, q + q'/2, t) 
limits the paths to classical paths beginning at qA = q -  q'/2 and ending at 
q~-~ q + q'/2. Together, these give the midpoint rule: 

qA + qB (26) 
q =  2 

i.e., the only paths that contribute to W(q, p, E, e) are those whose initial 
and final points define a chord whose midpoint is q. The spatial integral 
then limits the sum to paths for which 

P~ + PB 
P 2 

The time integral limits the sum to those with energy E, and also to 
periodic orbits (qA = qs; PA-  PB), since for these orbits both the first and 
second derivatives of the phase are zero. Hence in this phase space picture, 
the relation to periodic orbits falls out, and is not the result of averaging. 
The final result again has a smooth part, which is just the energy-smoothed 
version of (9). The oscillatory contribution from one periodic orbit is the 
main result of Berry's work, but is too detailed to reproduce here. 
Qualitatively, this contribution is an Airy function as we move off of the 
energy shell, and sinusoidal oscillations of constant amplitude as we move 
off the periodic orbit but stay on the energy shell. 

This work was extended to billiard systems by Feingold etal. ~24) In 
these systems the formula must be modified since one term (containing the 
first and second time derivatives of the momentum) disappears. The result 
is that scars are deeper in the semiclassical limit for billiards [ W ~  C(h-l)] 
than for smooth potentials [ W ~  C(h- 2/3)]. 

In both of these works, we are given explicit details of the contribution 
of one periodic orbit to a wavefunction. However, it is known that a single 
orbit cannot support a state. (Recall that for integrable systems it was the 
whole family of periodic orbits that gave rise to a state.) Yet some states 
seem to be completely localized on one single periodic orbit. Ozorio de 
Almeida ~39) addressed this question by examining the homoclinic torus (i.e., 
the Lagrangian torus made up of the central periodic orbit and the initial, 
smooth pieces of the stable and unstable manifolds). Inside each such torus 
is an infinity of long, periodic orbits that spend much of their time in the 
vicinity of the unstable central orbit. Therefore their actions can be simply 
related to the action of the central periodic orbit, and under certain 

822/68/1-2-8 
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circumstances (2r ~< 2 In 2 and the quantization of the action of the central 
periodic orbit), they can contribute coherently to make a divergent 
contribution to a state. This work explains why we would expect the 
scarred states to be localized along the SUM of the unstable periodic orbit. 

6. C U R R E N T  W O R K  

There are many questions that are still unresolved concerning scars. 
The formulas of Berry and Bogomolny describe energy-averaged functions, 
not individual states, and give the contribution from one periodic orbit. 
Any individual state has contributions from all periodic orbits. Some ques- 
tions that have been investigated include the following: Are individual 
wavefunctions clearly scarred, or only energy averages? At what energies 
do scarred wavefunctions appear? How is the scarring strength shared 
between wavefunctions? How large can 2r be before scarring disappears? 
Are there any truly ergodic wavefunctions? How does scarring scale with h? 
In an effort to answer these and other questions, there has been much 
numerical and analytical work done on scars in a wide variety of systems. 
What follows is at best a partial list of contributors. 

To the best of our knowledge, scarred eigenfunctions exist in all non- 
integrable systems (at least all systems where anyone has looked), even 
though the classical dynamics of these systems covers the range from 
pseudointegrable to hard chaos. The least chaotic systems are pseudo- 
integrable billiards; these are billiards that have constants of the motion 
which are in involution everywhere except at the vertices. As a result, the 
phase space is foliated by tori with two or more handles. Although 
the phase space is quite ordered, there is no way to find action-angle 
variables, and EBK quantization fails. Biswas and Jain (44) and Seba and 
Zyczkowski (45) have been scarring in such billiards. 

On the other end of the dynamical spectrum, scars have been seen in 
systems with hard chaos. Saraceno and Ozorio de Almeida (46) [based on 
work of Balazs and Voros (4v)] have worked with the quantized Baker's 
map, which is known to have no stable periodic orbits and exponential 
divergence of trajectories, and therefore exhibits hard chaos. In this system, 
the simplicity of the classical map allows a detailed analysis of the 
eigenstates in terms of classical structures. They are able to see that whole 
families of periodic orbits are necessary to support the eigenfunctions. 
Aurich and Steiner (48) studied a free particle moving on a compact 
Riemann surface of constant negative curvature, which is also known to 
exhibit hard chaos. These surfaces of constant negative curvature are of 
great interest in periodic orbit theory, since the density-of-states formula 
(21) is exact for these systems, and not a semiclassical approximation. The 
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authors were therefore able to derive an exact sum rule for the eigenstates 
and also found that it is not a single orbit, but a whole collection of 
periodic orbits that contribute to scarring. 

Scarring is also not confined to time-independent systems: this 
phenomenon has been seen in the quasienergy eigenfunctions of a kicked 
rotor by Ku~ et al. (49) and by Jensen et al. (5~ in eigenstates of hydrogen in 
a microwave field. 

Researchers have begun to investigate Bogomolny's formula in specific 
systems. Scarred wavefunctions of a hydrogen atom in a magnetic field 
have been quantitatively investigated by Wintgen and H6nig (38) and 
Delande. (51) In particular, energy-averaged scar measures are shown to 
peak at quantized values of the action, details of the shape of wavefunc- 
tions are well-described by Bogomolny's work, and the h dependence of the 
width and strength of the scar (both go as h m )  are in agreement with 
theory. On the other hand, Frisk (52) looks at eigenstates of a family of 
billiards and finds that scarring strength is underestimated by this theory, 
and that the decrease in scarring strength is correlated to the Kolmogorov- 
Sinai entropy (a global measure of the degree of chaos), and not the 
stability of the individual orbits. Frisk also finds that scars persist even 
when 2r = 10 for the periodic orbit that scars the wavefunction. 

There has been some success in predicting which states will be scarred. 
Investigations of the quartic oscillator by E c k h a r d t e t a L  (53) and the z~/3 
rhombus billiard by Biswas and Jain (44) use adiabatic breakup (54) to predict 
the energies at which periodic orbits will scar wavefunctions. This method 
works well in the systems studied, but it is not without practical difficulties 
(e.g., the appropriate choice of coordinates is essential but nontrivial) and 
limitations (e.g., it only works for periodic orbits that come in bands). 

Several researchers have investigated scarred wavefunctions in 
conjunction with measures of randomness. Berry conjectured (5/ that for 
ergodic systems, the wavefunctions would be superpositions of infinitely 
many deBroglie waves with all possible directions (since the classical par- 
ticles can have all possible directions). Then the wavefunction should be 
Gaussian random and the correlations should be isotropic. McDonald and 
Kaul'man C55) have studied eigenstates in the stadium billiards and find that 
although typical states are described by Gaussian random statistics, they 
are not evenly spread over the available configuration space (even if they 
allow for smoothing over several wavelengths) and conclude that they are 
not evenly spread over the energy shell in phase space. Localized states, on 
the other hand, deviate greatly from Gaussian random behavior. 

Very similar results are found by Biswas and Jain ~44) in the ~/3 
rhombus billiards, and Seba and Zyczkowski (45) in the Sinai billiard with 
a point scatterer, even though the classical dynamics of the systems is very 
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different (hard chaos vs. pseudointegrability). In particular, they find that 
many states show Gaussian random behavior (though not the localized 
ones). However, the correlation functions for these Gaussian random states 
deviate from expectation for large spatial separations, indicating that there 
are not a large number of plane waves in these eigenfunetions. The 
Gaussian random behavior in these systems can be understood by noting 
that as few as six superimposed plane waves with random directions (one 
from each branch of these somewhat more complicated tori) are enough to 
create random wavefunctions. (56) The conclusion is that Gaussian random- 
ness is a necessary but not sufficient criterion for chaos in the classical 
limit. 

Biswas e ta / .  (4~ have made a connection between the results of periodic 
orbit theory (POT) and random matrix theory (RMT) (which has also 
played a large role in quantum chaology; for a general review of RMT see 
ref. 41; for a review of RMT and quantum chaology see ref. 42). They argue 
heuristically that the contributions from each periodic orbit and its nearby 
closed orbits contribute to an energy eigenstate as independent random 
variables with zero average and finite width so that the amplitude 
of the eigenfunction has a Gaussian distribution. This is exactly the 
distribution expected if the Hamiltonian is a typical member of the 
Gaussian orthogonal ensemble of random matrices, as conjectured by 
Bohigas et al. (43) 

Heller and co-workers have investigated very general questions about 
scars. O'Connor and Heller (Sv) have studied the h dependence of scarring 
in the stadium billiard. They argue that scarred states are a set of measure 
zero as the classical limit is approached (although they are infinite in 
number), so that there is no conflict between localization of these states 
and the correspondence principle as expressed in the work of Shnirelman, 
Zelditch, and Colin de Verdiere. (21) H e l l e r e t a l .  (58) show that random 
superpositions of plane waves obeying discrete symmetries can be localized 
even when there are no underlying periodic orbits, cautioning us against 
quick scar evaluations. They also discuss ways in which the order of scars 
and the original notion of random wavefunctions can be compatible. 

Finally, it is important to note that scarring and its effects have been 
seen in experiment. Sridhar (59) has done experiments in microwave cavities 
shaped liked the chaotic Sinai billiard and found that some of the modes 
are indeed localized on unstable periodic orbits. In experiments ionizing 
Rydberg hydrogen atoms in microwave fields, certain energy states 
were found to be more stable against ionization than their neighbors. 
Jensen et al. ~5~ have been able to explain this stability by noting that the 
corresponding quasienergy eigenfunction is localized in phase space so the 
atom has little probability to ionize. They present this localization as a new 
method for the quantum inhibition to transport. 



Semiclassical Wavefunctions 117 

7. M O D E L  H A M I L T O N I A N  

The model that we study is unusual in that the classical Hamiltonian 
is not kinetic plus potential, and the phase space is compact. Yet here, too, 
scarring is clearly present. 

The model is a schematic shell model, with its origins in nuclear struc- 
ture physics. (6~ It represents N interacting fermions that are allowed to 
occupy three different single particle levels or shells. Each shell is N-fold 
degenerate, so there is no Pauli blocking. The Hamiltonian has two terms: 
the first is a single-particle Hamiltonian and the second is a simplified 
two-body interaction. 

This Hamiltonian can be written in terms of the generators G U of a 
U(3) algebra, (61) 

L = (28) 
i=O i ~ j = O  

where 
N 

Gij= ~ a~+ajm; G~=Gj~; i , j = 0 , 1 , 2  (29) 
m = l  

and (ai +, aim ) a r e  the usual creation-annihilation fermionic operators. Due 
to the conservation of the total number of particles, these operators are 
subject to the additional constraint Goo + Gu + G22 = N, and therefore the 
dynamical symmetry is now reduced to an SU(3) algebra. 

In (28) the labels i and j =  0, 1, or 2, and indicate the ground, first, 
or second single-particle level. The energy of each level is given by ei, and 
the interaction strength is given by V. We solve this Hamiltonian in the 
basis which is completely symmetric under interchange of particle labels. 
The basis states are labeled by In1, n2), where ni is the number of particles 
in level i. 

Although the quantum problem is straightforward to solve, one can- 
not obtain the classical limit in the standard way--there is no h to take to 
zero. However, as N ~  o% the system becomes macroscopic and should 
behave classically. It has been shown that the N ~ oe limit does play the 
role of h --* 0. (16) Coherent states play a key role in this limit: classical limits 
of physical observables are the expectation values of corresponding quan- 
tum operators between normalized coherent states. As N---, ~ ,  the spread 
in the coherent state decreases and the state closely resembles a classical 
point. The coherent states and the N ~ oe limit have been studied in detail 
for this model by Leboeuf and Saraceno. (62'63) 

In the semielassical limit, the interaction parameter V is properly 
scaled as z-(N-1)V/e .  It w a s  f o u n d  (64) that for Z~> 100 there are large 
energy ranges for which the classical dynamics is chaotic. As we are mainly 
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interested in this regime and as the Hamiltonian simplifies considerably in 
the Z ~ oe limit, from now on we take the following rescaled Hamiltonian: 

Z = ~ ;  H ~ H / ( N z )  (30) 

For this value of the coupling, the classical dynamics exists only for 
- 1 / 4  ~< E~< 1/3. In this range, only the very high and low energies are 
quasi-integrable (i.e., phase space has very small chaotic regions). Judging 
by the fraction of trajectories with positive Lyapunov exponents, the 
dynamics is mixed regular and chaotic for - 0.15 ~< E ~< 0.02 and chaotic for 
0.02 ~< E ~< 0.24. 

Also for this coupling, the classical Hamiltonian in terms of 
action-angle variables can be written as follows: 

~ ( I ,  0) = l o l  2 cos 2(02 - 0o) + 111o cos 2(00 - 01) 

+ I l i 2  cos 2(02-01) (31) 

where the action variables, (Io, I1,12) are the classical continuous analogs 
of the shell occupation numbers (no, nl, n2) (scaled by N) and satisfy the 
conditions 

0~<Ii~< 1, i=0 ,  1,2 (32) 

l o + 1 1 + 1 2 =  1 (33) 

The Hamiltonian is N-independent due to the normalization (30). We have 
written (31) in terms of three degrees of freedom to display the symmetry 
of the classical motion upon interchange of the single-particle labels. 
However, (33) provides a second constant of the motion (besides the 
energy), which reduces the motion to two degrees of freedom. These can 
be chosen to be the populations of any two of the levels and the corre- 
sponding angle differences. In what follows we choose as variables 11 and 
12, so that the Hamiltonian (31) is now written only in terms of the 
actions (11, 12) and their conjugate angles (01, 02). The corresponding 
action space is the isosceles triangle, given by (32) with i =  1, 2. 

8. PERIODIC ORBITS  A N D  S C A R R I N G  IN THIS  M O D E L  

In order to study scars, we must identify the short, unstable periodic 
orbits. As was pointed out in ref. 63, the SU(3) model has several simple 
families of periodic orbits lying on the invariant planes given by L = 0 or 
I s = I k; a quick examination of Hamilton's equations of motion reveals that 
these are indeed invariant. From number conservation (33), these con- 
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straints reduce the Hamiltonian to a one-degree-of-freedom problem for 
which all trajectories are periodic orbits. 

In previous work (65) we focused on the Io = 0 periodic orbit. This orbit 
exists for -0 .25 ~< E ~< 0.25, and is unstable for -0.236 ~< E~< 0.25. The 
strength of the scarring was measured by taking the overlap of the eigen- 
functions with the eigenstates of the number operator that lie along the 
I0 = 0 line: 

Pm=~ ] ( n , , N - n l  I r 2 (34) 
n l  

We found that this quantity, averaged over energy, behaves much as the 
results in Section 5 would predict. There is a smooth background which is 
well described by (9), integrated over the coordinates (the angles, in this 
case), and Lorentzian-smoothed in energy. On top of the smooth back- 
ground, there are oscillations whose peaks are at values of E that quantize 
the action of the periodic orbit. In the following discussion, we will refer to 
the energy interval surrounding the peak as the scarring region, and the 
energy interval surrounding the trough as the antiscarring region. This 
scarring persisted even when the instability of the orbit (2r) exceeds 20, but 
the strength of the scarring did decrease as the instability increased, as 
predicted by BogomolnyJ 25) 

Finally, in order to further establish the connection between the 
eigenstates and the periodic orbits, we examined the wavefunctions in 
phase space using the Husimi distribution and quantal surfaces of section. 
For this system, the coherent states in the symmetric number basis can be 
written 

(1t, 12, 01, 02 I nln2~ 

E 1 N! I~I~2(1 I~ Iz) N-'~- '2 
nl r n2! ( N - n l - n z ) !  

x exp(in101) exp(in202) (35) 

i.e., a trinomial distribution centered on Ii=ni/N. For both the 
quasichaotic region and the chaotic region, scarred states were localized on 
the stable and unstable manifolds; moreover, in the quasichaotic region 
they were maximum at homoclinic points, i.e., the points where the stable 
and unstable manifolds cross. 

One suggestion of Heller ~4) is that there may be no ergodic eigenstates 
in the sense of (9). We investigate this proposal first where the dynamics 
is relatively simple, yet interesting: the quasichaotic region. We looked at 
40 states between -0.098~<E~<-0.082; this energy range covers one 
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Fig. 2. (a) The same state and manifolds as in Fig. lc,  but on the I 2 = 0.3 surface of section. 
(b) The same as in Fig. lc, but on t h e / 2 = 0 . 1 5  surface of section. Note that in both (a) and 
(b), the quantal surface of section remains a maximum on the homoclinic point. (c) The same 
state and manifolds as in Fig. ld, but on t h e / 2  ~ 0.3 surface of section. (d) The same as in 
Fig. ld, but on the I 2 = 0 . 1 5  surface of section. Note  that the QSOS in all cases (I2 =0 .5 ,  
0.3, 0.15) is localized on both sets of manifolds. 
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scarring and one antiscarring energy interval. Although the phase space is 
approximately 50 % chaotic at this energy (see Fig. la), there was only one 
state in this set that was not readily identifiable as either an eigenstate 
associated with a torus (13 states), with an I ; = 0  periodic orbit (5 states), 
with an Ii = Ij periodic orbit (10 states), or with a mixture of both periodic 
orbit families (11 states) (see Fig. 1 ). Therefore, although the chaotic region 
is large enough to support states, almost all states are localized on tori or 
on stable and unstable manifolds. In order to claim that these states are not 
ergodic, we must consider what would happen if we were to smear theses 
states over a region of size 2~h (see the small box in Fig. la). For  the states 
in Figs. l b - l d  we see that even such averaging would not give an even 
distribution. However, the state in Fig. if  (after averaging) would be quite 
smooth in the ergodic region. 

It is well established that we cannot predict which individual states 
will be scarred. Quantization of the action predicts the maximum in the 
energy-averaged scar measure, but not the energy of an individual scarred 
state. In fact, in our system the eigenvalues of some scarred states are 
within an antiscarring interval (see Fig. ld). However, there is a qualitative 
difference between the scarred states in the scarring interval and those in an 
antiscarring interval. Those scarred states nearest in energy to the value 
which quantizes the action are completely localized on the SUM of the 
scarring orbit (Fig. lc). However, those in the antiscarring interval are 
clearly supported by at least two periodic orbits (Fig. ld). Therefore, while 
the quantization rule is of little help in predicting where scarring will occur, 
it does locate the regions of the most dramatic scarring. 

In order to check that these associations with periodic orbits and their 
SUM are not coincidence or imagination, we looked at other quantal sur- 
faces of section (i.e., 12 =0.3, 0.15). Figure 2 shows these for a scarred state 
in the scarring interval and for a scarred state in the antiscarring interval. 
For  the state in the scarring interval, we can see that the association 
persists, including the maxima on the homoclinic points. For  the state in 
the antiscarring interval, we see that all of the surfaces of section show the 
state localized around the SUM of both the Io = 0 and I1 = Io orbits. 

Motivated by the extreme order in the quasichaotic regime, we looked 
for order in the chaotic regime. Again we looked at a range of states that 
spanned a scarring and antiscarring interval (0.175 ~< E~< 0.195). Here, of 
the 29 states, only 13 are easily associated with a particular manifold. The 
remaining states could be identified with multiple classical structures by 
careful inspection of both the action plots (Fig. 4) and the QSOS (Fig. 3). 
These two provided complementary information. The action plots gave the 
global picture of phase space, although some information is lost in the 
projection down onto action space. This lost information can be recovered 
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Fig. 4. (a) The Husimi distribution, projected onto action space for the state shown in 
Fig. 3d. Note that in action space the state does not appear ergodic, because it avoids 
the center. However, inspection of Fig. 3a shows that there is less phase space available 
in the center of the triangle, hence even a totally ergodic wavefunction would have a smaller 
amplitude in this region. (b) The projection of the wavefunction shown in Fig. 3b. Comparing 
(a) and (b), one can appreciate the term "scarred wavefunction." 
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Fig. 5. (a) The energy-averaged QSOS for all 40 states in the quasichaotic energy range. 
This QSOS is relatively smooth (compare with Fig. lf), but one can see the imprint of the 
invariant tori and the lo = 0 and 11 = 0  periodic orbits along the 11 ---0 and It =0 .5  lines. 
(b) The energy-averaged QSOS for all 29 states in the chaotic energy range. Here again the 
most prominent features are localization around the shortest periodic orbits (10 = 0, 11 = 12, 
and 1~ = 0 ) .  The stable and unstable manifolds are shown as circles for the 11 =lz  periodie 
orbit. 
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by examining the QSOS. After such an examination, it was clear that 
almost all states were supported by only a few classical structures, and that 
only two were ergodic. 

For example, Fig. 3b shows a scarred state near a quantizing energy. 
Unlike the scarred states in the quasichaotic regime, this state is not com- 
pletely on the SUM of the scarring orbit (which includes the entire 
I1 =0.5 line), but is also localized on another classical structure (clearly 
visible in other states) not associated with that periodic orbit. However, a 
typical scarred state in the antiscarring interval (Fig. 3c) is far less localized 
than the one in the scarring interval. Finally, in Fig. 3d we show the most 
ergodic states in the energy interval, which would (as with Fig. lf) be 
ergodic after smoothing. 

These observations indicate that there is a hierarchy of localization. 
Those states in the quasichaotic region and near an energy which quantizes 
the action are completely localized on the SUM of the quantized periodic 
orbit; the others not close to the quantizing energy are supported by two 
or more orbits. In the chaotic region, scarred states near the quantizing 
energy are mostly localized on the scarring SUM, but have a noticeable 
fraction off of that manifold. Finally, those in the chaotic region but not 
near a quantizing energy have at least two states equally contributing. 

Finally, we look at energy-averaged QSOS. The expectation from the 
work: of Berry and Bogomolny is that if we average over an energy interval 
that is small classically (i.e., the classical dynamics changes very little), but 
quantum mechanically large (containing many states), we should see a 
smooth background and the contributions due to the shortest periodic 
orbits. To verify this, we averaged the QSOS with equal weights over the 
energy interval that includes one scarring and one antiscarring region. The 
results are shown in Fig. 5a for the quasichaotic states and Fig. 5b for the 
chaotic states. Indeed, in both cases the shortest periodic orbits can clearly 
be seen. We expect that as N increases, averaging more states over the 
same energy interval would lead to smoother distributions, and even the 
localization due to the shortest periodic orbits would disappear. 

9. C O N C L U S I O N  

In conclusion, we return to our original question: can we say anything 
about energy eigenfunctions of nonintegrable systems without solving the 
Schr6dinger equation and using only the knowledge of the classical system? 
The answer is yes, but not as originally expected. Energy-averaged 
eigenstates give good agreement with Wigner or Husimi distributions 
evenly spread over phase space. On the other hand, most individual states 
are strongly influenced by only a few classical structures (i.e., tori or SUM 



128 Meredith 

of unstable periodic orbits). The details of the morphologies of these states 
are given by the EBK approximation (for states localized on tori) or the 
work of Bogomolny and Berry (for states localized on a periodic orbit). 
However, we cannot say precisely which states will be scarred, but can only 
say that the most dramatic localization occurs at energies which nearly 
quantize the unstable periodic orbit, and that scarred states in an anti- 
scarring energy interval are supported by more than just one orbit. 

We also find that the localization is more pronounced in the 
quasichaotic regime than in the completely chaotic regime. This is consis- 
tent with the work of Alhassid and co-workers, ~66/ which showed that the 
distribution of the matrix elements between eigenvectors is a Z 2 distribution 
with v degrees of freedom. If the classical limit is completely chaotic, v = 1; 
however, if there is a region of regular motion, v < 1, and therefore the 
distribution gives rise to greater fluctuations in the matrix elements. 

Given this unexpectedly high degree of order in the eigenstates, one 
wonders whether there is a qualitative difference between eigenstates of 
chaotic Hamiltonians and those of integrable Hamiltonians (compare 
Figs. lb and lc). The answer may lie in recent work by Leboeuf and 
Voros, ~ who have shown that the zeros of the Husimi distribution are 
qualitatively different for these two classes of systems, and are therefore an 
unmistakable signature of the classical dynamics in the quantum system. 
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